Counting Finite-Dimensional Algebras Over Finite Field
نویسندگان
چکیده
منابع مشابه
enumerating algebras over a finite field
we obtain the porc formulae for the number of non-associative algebras of dimension 2, 3 and 4 over the finite field gf$(q)$. we also give some asymptotic bounds for the number of algebras of dimension $n$ over gf$(q)$.
متن کاملenumerating algebras over a finite field
we obtain the porc formulae for the number of non-associative algebras of dimension 2, 3 and 4 over the finite field gf$(q)$. we also give some asymptotic bounds for the number of algebras of dimension $n$ over gf$(q)$.
متن کاملFinite Dimensional Hecke Algebras
This article surveys development on finite dimensional Hecke algebras in the last decade. In the first part, we explain results on canonical basic sets by Geck and Jacon and propose a categorification framework which is suitable for our example of Hecke algebras. In the second part, we review basics of Kashiwara crystal and explain the Fock space theory of cyclotomic Hecke algebras and its appl...
متن کاملOn permutably complemented subalgebras of finite dimensional Lie algebras
Let $L$ be a finite-dimensional Lie algebra. We say a subalgebra $H$ of $L$ is permutably complemented in $L$ if there is a subalgebra $K$ of $L$ such that $L=H+K$ and $Hcap K=0$. Also, if every subalgebra of $L$ is permutably complemented in $L$, then $L$ is called completely factorisable. In this article, we consider the influence of these concepts on the structure of a Lie algebra, in partic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Results in Mathematics
سال: 2020
ISSN: 1422-6383,1420-9012
DOI: 10.1007/s00025-020-01281-6